

Инструкция по установке фотоэлектрических модулей JUST SOLAR

1. ВВЕДЕНИЕ

ПРЕДУПРЕЖДЕНИЕ

ОБШЕГО НАЗНАЧЕНИЯ

- НЕ ИСПОЛЬЗУЙТЕ модуль, где это может привести к смерти, травме или повреждению имущества.
- Убедитесь, что фотоэлектрических модулей соответствует спецификации для всей системы в целом.

ОБЩИЕ ПРАВИЛА ОБРАЩЕНИЯ

- > Обращайтесь с PV модулем с осторожностью.
- > HE разбирайте PV модуль.
- > НЕ изменяйте или не удаляйте любые компоненты.
- > НЕ сгибайте PV модуль.
- НЕ становитесь и не наступайте на модуль, чтобы избежать травм и повреждение модуля.
- НЕ воздействуйте на переднюю или заднюю поверхности PV модуля. Задняя поверхность может повредиться острыми предметами.
- > НЕ выбрасывайте PV модуль.
- НЕ касайтесь частей проводов, кабелей, разъемов и соединительных коробок.
 Убедитесь, что выключатель отключен. Всегда используйте средства защиты (изолированный инструмент, изолирующие перчатки, изолирующие обувь и т.д.).
- > НЕ используйте кабели и разъемы в качестве ручки

VCTAHORKA

- Установка должна осуществляться квалифицированным персоналом, имеющим опыт работы с установкой электрических и фотоэлектрических систем.
- > НЕ используйте поврежденные фотоэлектрические модули.
- Неисправный PV модуль может привести к пожару или поражению электрическим током, травме или даже смерти.
- > Не подвергайте PV модуль искусственно сконцентрированному солнечному
- > Закройте переднюю поверхность PV модуля непрозрачной тканью или другими материалами при монтаже и ремонте. Воздействие солнечных лучей на PV модуль создает высокое напряжение и ток. Сорикосновение с проводкой модуля может привести к пожару или поражению электрическим током.
- Необходимо прочно закреплять фотоэлектрические модулей монтажной рамой,
 так, чтобы нейтрализовать нагрузки, вызываемые ветром и снегом. Рама должна отвечать соответствующим строительным нормам.
- НЕ блокируйте сливные отверстия в углах модуля
- > Надежно заземляйте PV модуль и раму.
- > Безопасная и надежная установка PV модулей поможет избежать травм и смертельных случаев, а так же имущественного ущерба из-за скопления снега.
- Используйте выключатель, способный разорвать цепь при возникновении тока утечки

2. МЕХАНИЧЕСКАЯ УСТАНОВКА

А. Выбор места установки

- > Выберите подходящее место для установки модуля.
- Для достижения оптимальной производительности, модуль должен быть обращен на юг в северных широтах и север в южных широтах.
- > Для получения более точной информации об ориентации PV модуля обратитесь к опытным установщикам.
- > Модули не должны быть затенены в любое время суток.
- НЕ устанавливайте модуль рядом с оборудованием или в местах, где могут собираться горючие газы.

В. Правильный выбор креплений и комплектующих

- Соблюдайте все инструкции и меры предосторожности при работе с системой крепления модулей.
- НЕ сверлить отверстия в поверхности стекла модулей. Это приведет к аннулированию гарантии.
- НЕ сверлить дополнительные отверстия в модуле рамы. Это приведет к аннулированию гарантии.
- Модули должны быть надежно закреплены на монтажной структуры, используя четыре точки крепления для нормальной установки. Если ожидается сильный ветер и сне, то необходимо использовать дополнительные точки крепления. Смотрите на рисунке ниже(Рис.1).
- > Расчет нагрузки является обязанностью проектировщика установки системыи.
- Монтажное оборудование должно быть изготовлен из прочного, коррозионно-и

С. Способы монтажа

а. Монтаж с болтами

- Используя 4 угловых отверстия закрепить PV модуль на болт (М8) на монтажной раме.
- Когда ожидается большая нагрузка, необходимо использовать все 8 отверстий на двух длинных сторонах рамы
- Используйте пружинные шайбы и плоские шайбы для крепления PV модуля.
- Безопасная установка PV модуля, обеспечивается надежным закреплением соответствующих болтов с гайками и двойным замком шайбы.

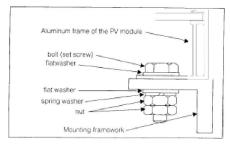
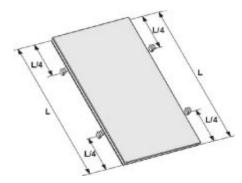



Рис. 1 Монтаж на раме (Ссылка)

b. Монтаж с зажимами

- База профиля должна быть расположена перпендикулярно длинной стороне рамки модуля.
- > Модуль должен фиксироваться в 4-х или более местах, на длинной стороне рамы
- > См. рисунок и таблицу допустимых областей установки.
- Отсутствие щели между материалом и рамой, можно обеспечить, используя М6 или болты (М8), если ожидается увеличенная нагрузка (cнer).
- Центральная линия заклепок должна быть между 1/8L и 1/4L на длинных сторонах модуля.
- Обратите внимание, что крепежные скобы должны соответствовать минимальным размерам (ширина 5 мм и длина 30 мм).
- Использовать вырезку материала с достаточной прочностью и формы, которые могут выдерживать силу давления ветра и снеголада , характерные для местного климата.
- Момент затяжки (с использованием нержавеющей стали М8) должен быть более 15 нм.
- Предпринять некоторые меры, что бы падение и скольжение модуля вниз, не причинило никакого ущерба для людей или имущества.

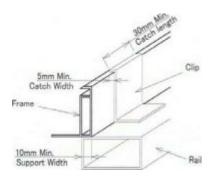


Рис. 2 Метод зажимов

с. Установка в прибрежных условиях(туман, сильный ветер)

- При монтаже с помощью болтов, должны использоваться все 8 отверстий для крепления (болтами М8).
- При установке с зажимами, момент затяжки (с использованием нержавеющей стали М8) должно быть не менее 15 Нм.
- > Слой окисления каркаса PV модуля не должен превышать 16 микрон.
 - Необходимо использовать оцинкованные материалы и компоненты.

3. ЭЛЕКТРИЧЕСКИЙ МОНТАЖ

Класс защиты в соответствии с IEC 61140

Только уполномоченный и обученный персонал, знакомый с соответствующими правилами безопасности может иметь доступ к фотоэлектрическим модулям.

А. Заземление

- > Все модули каркаса должны быть заземлены.
- > Соблюдайте все правила и нормы при работе с электричеством.
- Крепление с зубчатой шайбой требуется для надежного электрического соединения заземления с корпусом из анодированного алюминия.

а. Метод № 1

- > Закрепить винтом из нержавеющей стали отверстие для заземления.
- Как показано на рисунке 3, медная проволока должны быть сжата головками винта.
- Система связана с электричеством и может представлять опасность для персонала.
 - При монтаже каркаса, должны быть заземлены металлические рамки PV модулей.
 - > Правильно заземляйте модули, в соответствии с условиями в месте установки.
 - > Шайба между медным проводом и корпусом должна быть из нержавеющей стали или иметь антикоррозионное покрытие.
 - > Шайба должна находиться между медным проводом и головкой винта

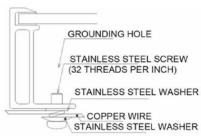


Рис. 3 Заземление. Метод №1

b. Метод №2

- Отверстия, не предназначенные для крепления модуля, могут использоваться для заземления.
- Устройство «выступ заземления» (Рис.4), должно комплектоваться болтом, гайкой и шайбой из нержавеющей стали.
- Зубчатая шайба должна быть вставлена между гайкой и корпусом, чтобы нарушить анодированный слоя каркаса.
- Шайба из нержавеющей стали или соответствующего антикоррозийного покрытия должна быть вставлены между выступом заземления и каркасом

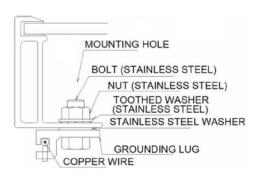



Рис. 4 Метод заземления №2

ПРЕДУПРЕЖДЕНИЕ

- > Не замыкайте положительный и отрицательный кабели
- > Убедитесь, что в разъемах отсутствуют разрывы между

изоляторами, и они надежно заблокированы. Разрыв может стать причиной пожара или поражения электрическим током.

ВНИМАНИЕ!

- РV модуль содержит пару водонепроницаемых разъемов «папа и мама». Для серии электрических соединений, подключите положительный разъем первого PV модуля к отрицательному разъему следующих модулей.
- > Правильно подключайте выходной кабель к другому оборудованию в системе.
- Подключение необходимое количеств фотоэлектрических модулей для достижения напряжения спецификации оборудования, используемого в PV системе.
- Выходные разъемы кабеля не должны оказывать давление на распределительную коробку РV модуля.
- Для удлинения кабеля, используйте надлежащие покупные кабели и разъемы, которые могут использоваться на улице в течение длительного времени. Выберите нужный диаметр кабеля в соответствии с его длиной, чтобы избежать падения напряжения.

Примечание: для использования в полевых условиях используйте медный провод №10 AWG , с изоляционным слоем, выдерживающим минимум 90°C.

В. Электрические параметры некоторых модулей

Туре	JST-M160M	JST-M165M	JST-M170M	JST-M175M	JST-M180M	JST-M185M	
Max Power Pm(W)	160	165	170	175	180	185	
Max-Power Voltage V _m (V)	34.9	35.6	35.8	36.2	36.8	37.5	
Max-Power Current I _m (A)	4.60	4.65	4.76	4.85	4.90	4.95	
Open-Circuit Voltage Voc(V)	42.8	43.2	43.6	43.9	44.2	44.5	
Short-Circuit Current Isc(A)	5.15	5.20	5.25	5.30	5.35	5.40	
Cell Efficiency	15.0%	15.5%	16.0%	16.5%	17.0%	17.5%	
Maximum System Voltage(V)	1000(TUV)/600(UL)						
Maximum Series Fuse Rating(A)	15						
Power Tolerance	±3%						

Туре	JST-M180P	JST-M190P	JST-M200P	JST-M210P		
Max Power Pm(W)	180	190	200	210		
Max-Power Voltage V _m (V)	26.5	26.8	27.2	27.5		
Max-Power Current I _m (A)	6.80	7.10	7.36	7.63		
Open-Circuit Voltage Voc(V)	32.4	32.5	32.7	32.8		
Short-Circuit Current Isc(A)	7.60	7.72	7.86	7.98		
Cell Efficiency	13.7%	14.5%	15.2%	16.0%		
Maximum System Voltage(V)	1000(TUV)/600(UL)					
Maximum Series Fuse Rating(A)	20					
Power Tolerance	±3%					

Туре	JST-M200P	JST-M210P	JST-M220P	JST-M230P	JST-M240P	
Max Power Pm(W)	200	210	220	230	240	
Max-Power Voltage Vm(V)	29.5	29.5	30	30	30	
Max-Power Current I _m (A)	6.90	7.20	7.40	7.66	8.00	
Open-Circuit Voltage Voc(V)	36.0	36.0	36.6	37.0	37.4	
Short-Circuit Current Isc(A)	7.60	7.80	8.10	8.38	8.55	
Cell Efficiency	13.70%	14.4%	15.1%	15.8%	16.4%	
Maximum System Voltage(V)	1000(TUV)/600(UL)					
Maximum Series Fuse Rating(A)	20					
Power Tolerance	±3%					

Туре	JST-M250P	JST-M260P	JST-M270P	JST-M280P		
Max Power Pm(W)	250	260	270	280		
Max-Power Voltage V _m (V)	34.6	34.8	35	35.2		
Max-Power Current I _m (A)	7.23	7.47	7.71	7.95		
Open-Circuit Voltage Voc(V)	43.7	44.0	44.5	44.8		
Short-Circuit Current Isc(A)	7.98	8.09	8.20	8.33		
Cell Efficiency	14.3%	14.8%	15.4%	16.0%		
Maximum System Voltage(V)	1000(TUV)/600(UL)					
Maximum Series Fuse Rating(A)	20					
Power Tolerance	±3%					

Примечание: электрические характеристики в пределах + / -10% от указанных значений Isc, Vocu Pm при стандартных условиях испытания (освещенность от 1000Вт/м2, АМ 1,5 спектра

4. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Just solar рекомендует обслуживать следующие элементы для обеспечения оптимальной производительности модуля:
Не прикасаться к оголенным частям провода, кабели, разъемам и соединительным > Убедитесь, что гайки, болты в монтажной раме надежн

- коробкам. Убедитесь, что выключатель отключен, если это возможно. Всегда используйте средства защиты (изолированные инструменты, изолированные > Проверьте подключение кабелей, заземление кабелей и разъемов.
- По мере необходимости очистищайте поверхность стекла модулей. Используйте воду и мягкую губку или ткань для чистки. При необходимости могут использоваться мягкие, неабразивные чистящие средства. Не используйте обычные моющие средства.
- Электрические и механические соединения должны периодически проверяться квалифицированным персоналом. Они должны быть чистыми и неповрежденными.
- Затяните все свободные компоненты.
- Проверьте все электрические и механические соединения на отсутствие коррозии.
- Проверьте надежность заземления металлических деталей, таких как модуль

ВНИМАНИЕ!

- НЕ концентрировать солнечный свет на модуле, поскольку он не предназначен для такого использования.
- Сборки PV модулей Just Solar должны устанавливаться на крыши с огнестойким покрытием
- В нормальных условиях, фотоэлектрический (РV) модуль, скорее всего, будет вырабатывать большие токи и / или напряжения, чем в стандартных условиях испытаний. Таким образом, значения Ізс и Voc характеризующие этот модуль должны быть умножены на коэффициент 1,25 при определении значений напряжений, характеристик проводников, предохранителей и размеров элементов управления, подключаемых к выходу PV модуля.

ПРЕДУПРЕЖДЕНИЕ

Невыполнение требований данного руководства, приведет к отмене всех гарантий JUST SOLAR, LIMITED. для любых случаев, которые могут быть следствием из такого отказаРV модули Just solar имеют сертификат безопасности по IEC 617:501 и в этом классе отвечают требованиям IEC 61730 (класс II).